

IURNAL KESEHATAN LUWU RAYA

The Journal of Health Luwu Raya

Vol.9 No.2 Januari 2023, p-ISSN 2356-198X, e-ISSN 2747-2655

ANALISIS KANDUNGAN VITAMIN C DALAM CABAI RAWIT (Capsicum fructuscens L.) SECARA IODIMETRI

Analysis Of Vitamin C Content In Cayenne Pepper (Capsicum fructuscents L.) By Iodimetry

Adhitama Asmal¹, Riska Yuli Nurvianthi², Tonsisius Jehaman³

¹ Prodi S1 Farmasi STIKES Bhakti Pertiwi Luwu Raya Palopo*
 ² Prodi S1 Farmasi STIKES Bhakti Pertiwi Luwu Raya Palopo *E-mail: asmaladhitama33@yahoo.com riskayulinurvianthi@gmail.com tonsijehaman@gmail.com

ABSTRAK

Vitamin C (asam askorbat) merupakan salah satu vitamin yang diperlukan oleh tubuh yang berfungsi membantu proses metabolisme tubuh. Vitamin C berperan dalam pembentukan kolagen interseluler. Penelitian ini bertujuan untuk mengetahui kadar vitamin C dengan menggunakan Iodimetri. Hasil penelitian menunjukkan kadar vitamin C yang diperoleh sebesar 11 mg/ 10 gram. Kesimpulan dari penelitian ini adalah kadar vitamin C pada cabai rawit dapat ditentukan dengan metode iodimetri dengan hasil 11 mg/ 10 gram sampel. Perlu dilakukan uji vitamin C (asam askorbat) pada cabai dengan jenis dan varietas yang berbeda untuk dibandingkan kandungan vitamin C terbesarnya.

Kata kunci: Vitamin C, Cabai Rawit (Capsium fructuscens L.), Iodimetri

ABSTRACT

Vitamin C (ascorbic acid) is one of the vitamins that the body needs which helpd the body's metabolic processes. Vitamin C have a role in estabilishmen of collagen intercelluler. This research intend to know vitamin C levels using iodimetry. Research of the result showed vitamin C levels obtained for 11 mg/10 g. Conclusion of this research is vitamin C levels in cayanne pepper can be determined by iodimetry method with the result 11 mg/10 g sample. Need to be tasted vitamin C (ascorbid acid) on pepper with different types and varieties to compare the greatest vitamin C contents.

Keywords: Vitamin C, Cayenne Pepper (Capsicum fructuscents L.), Iodimetry

© 2023 Jurnal Kesehatan Luwu Raya

○ Correspondence Address:

LP2M STIKes Bhakti Pertiwi Luwu Raya, Kota Palopo Indonesia

Email: <u>lp2mstikesluwuraya@gmail.com</u>

DOI: -

P-ISSN: 2356-198X

E-ISSN: 2747-2655

PENDAHULUAN

Sayuran bagi masyarakat Indonesia tidak bisa ditinggalkan dalam kehidupan sehari-hari karena manfaatnya yang begitu banyak di antaranya adalah sebagai sumber vitamin dan protein. Di Indonesia, sayuran hampir dijumpai pada semua makanan. Cabai merupakan sayuran yang kebanyakan ditemui dalam masakan Indonesia sehingga dapat membuktikan bahwa masyarakat Indonesia sangat menyukai cabai (Prajnanta, 2007).

Cabai rawit (Capsicum fructuscens L.) adalah sayuran dan tumbuhan anggota genus Capsicum. Selain di Indonesia, ia juga tumbuh dan populer sebagai bumbu masakan di negaranegara Asia Tenggara lainnya. Di Malaysia dan Singapura ia dinamakan cili padi, di Filipina siling labuyo, dan di Thailand phrik khi nu. Di Kerala, India, terdapat masakan tradisional yang menggunakan cabai rawit dan dinamakan kanthari mulagu. Dalam bahasa Inggris ia dikenal dengan nama Thai pepper atau bird's eye chili pepper. Secara umum cabai memiliki banyak kandungan gizi di antaranya kalori, protein, lemak, serat, garam mineral (Ca, P, Fe, K), kapsaicsin dan vitamin (provitamin A dan C) (Dalimartha, 2000).

Vitamin C (asam askorbat) adalah salah satu zat gizi yang berperan sebagai antioksidan efektif atau mengatasi radikal bebas yang dapat merusak sel atau jaringan termasuk melindungi lensa dari kerusakan oksidatif yang ditimbulkan oleh radiasi. Vitamin C sangat diperlukan untuk meningkatkan sistem imun dan mencegah berbagai penyakit, sekaligus membentuk kolagen dan hormon yang diperlukan oleh tubuh dan dapat ikut membantu penyerapan zat besi.

Penentuan vitamin C dapat dilakukan dengan titrasi iodimetri. Titrasi iodimetri merupakan titrasi langsung terhadap zat-zat yang potensial oksidasinya lebih rendah dari sistem iodium-iodida, sehingga zat tersebut akan teroksidasi oleh iodium. Cara melakukan analisis dengan menggunakan senyawa pereduksi iodium yaitu secara langsung disebut titrasi iodimetri, dimana digunakan larutan

iodium untuk mengoksidasi reduktor-reduktor yang dapat dioksidasi secara kuantitatif pada titik ekivalennya.

Berdasarkan uraian di atas, peneliti tertarik untuk menganalisis dan menetapkan kadar vitamin C yang terkandung dalam cabai rawit (Capsicum fructuscens L.) dengan metode iodimetri, karena peneliti ingin membuktikan apakah metode iodimetri dapat digunakan untuk menetapkan kadar vitamin C pada berbagai buah dan sayuran, salah satunya untuk menetapkan kadar vitamin C yang ada dalam cabai rawit, supaya masyarakat mengetahui jumlah kadar vitamin C yang dalam cabai rawit (Wulandari, 2012).

Rumusan Masalah adalah Apakah dalam cabai rawit (Capsicum fructuscens L.) mengandung vitamin C? dan Berapa kadar vitamin C dalam cabai rawit (Capsicum fructuscens L.)?

Tujuan Penelitian adalah Untuk mengetahui apakah dalam cabai rawit (Capsicum fructuscens L.) mengandung vitamin C dan Untuk mengetahui berapa kadar vitamin C yang terkandung dalam cabai rawit (Capsicum fructuscens L.).

BAHAN DAN METODE

Jenis penelitian

Jenis penelitian yang digunakan yaitu eksperimental untuk mengetahui adanya kandungan dan kadar vitamin C dalam cabai rawit yang dilakukan secara kualitatif dengan penambahan benedict, fehling A, dan FeSO4 serta secara kuantitatif metode iodimetri.

Sampel dan teknik sampling

Sampel penelitian adalah cabai rawit diperoleh dari daerah Batusura', kecamatan Rembon, kabupaten Tana Toraja. Buah dipetik langsung dari pohonnya..

Bahan dan Alat yang di gunakan

Alat yang digunakan dalam penelitian ini yaitu: Batang Pengaduk, blender, buret 50 ml, beaker glass 500 ml, corong kaca, gelas ukur 500 ml, kompor listrik, labu erlenmeyer 250 ml, labu takar 100 ml, neraca, pipet tetes, pipet volum, rak tabung, statif dan klem, tabung reaksi.

(Januari 2023) Hal.44 - 50

Adapun bahan yang digunakan dalam penelitian ini yaitu: Aluminium foil, amilum 1 %, aquades, benedict, cabai rawit, fehling A, FeSO4, H2SO4 10 %, I2 0,1 N, kertas label, kertas perkamen, kertas saring, KI 10 %, Na2 S2O3 0,1 N, K2Cr2O7.

Cara Kerja

Penyiapan Sampel

- a. Cabai rawit diperoleh dari daerah Batusura', kecamatan Rembon kabupaten Tana Toraja.
- b. Cabai rawit yang dipetik, yaitu buah yang sudah berwarna merah.
- c. Sampel dibersikan dan dicuci.
- d. Ditambang cabai rawit sebanyak 10 g, kemudian diblender dan disaring menggunakan kertas saring.
- e. Sampel siap digunakan.

Metode Analisis Kualitatif

Pembuatan larutan Benedict (Anonim, penuntun kimia farmasi 2020)

- a. Disiapkan alat dan bahan
- b. Ditimbang CuSO4 sebanyak 8,65 g kemudian ditambahkan aquadest 50 ml.
- c. Dimasukkan CuSO4 ke dalam labu erlenmeyer 50 ml.
- d. Dimasukkan aquades ad 50 ml lalu dihomogenkan.

Pembuatan larutan Fehling A (Anonim, Penuntun kimia farmasi 2020)

- a. Disiapkan alat dan bahan
- b. Ditimbang CuSO4 sebanyak 34,64 g, H2SO4 pekat sebanyak 0,5 ml dan aquadest ditambahkan 90 ml dimasukkan ke dalam labu takar.
- c. Dilarutkan CuSO4 dalam 100 ml aquadest, diaduk hingga rata.
- d. Ditambahkan beberapa tetes H2SO4 pekat.
- e. Diencerkan sampai 100 ml.

Pembuatan larutan FeSO4 2,8% b/v (FI.ed III hal 660)

- a. Disiapkan alat dan bahan
- b. Ditimbang FeSO4 sebanyak 2,8 mg, lalu dilarutkan dengan aquades 100 ml yang telah dididihkan dan dingin.

Uji Kualitatif

- a. Benedict
 - 1) Disiapkan tabung reaksi

- 2) Dipipet sampel sebanyak 2 ml, kemudian dimasukkan ke dalam tabung reaksi.
- Ditambahkan 5 tetes benedict, kemudian dipanaskan di atas penanggas selama 5 menit.
- 4) Jika sampel mengandung vitamin C, sampel akan mengalami perubahan warna dari hijau kuning sampei merah.

b. Fehling A

- 1) Disiapkan tabung reaksi.
- 2) Dipipet sampel sebanyak 2 ml, kemudian dimasukkan ke dalam tabung reaksi.
- 3) Ditambahkan 5 tetes fehling A, kemudian dipanaskan di atas penangngas selama 5 menit.
- 4) Jika sampel mengandung vitamin C, sampel akan mengalami perubahan warna dari kuning sampai merah bata.

c. FeSO4

- 1) Disiapkan tabung reaksi.
- Dipipet sampel sebanyak 2 ml sampel, kemudian dimasukkan ke dalam tabung reaksi.
- 3) Ditambahakan 5 tetes FeSO4 + 3 tetes NaHCO3
- 4) Jika sampel mengandung vitamin C, sampel akan mengalami perubahan warna menjadi ungu.

Metode Analisis Kuantitatif

Pembuatan larutan standar Iodium 0,1 N (FI edisi III hal.746)

Disiapkan alat dan bahan

Ditimbang 18 g kristal KI dan dilarutkan dalam 100 ml aquades.

Ditimbang 12,7 g kristal I2 dan dimasukkan dalam larutan KI sedikit demi sedikit sampai semuanya larut.

Dimasukkan ke dalam botol tertutup dan dikocok.

Ditambahkan aquades sampai 1000 ml.

Pembuatan larutan standar Na2S2O3 0,1 N (FI edisi III hal. 749)

Disiapkan alat dan bahan

Ditimbang 6,5 g Na2S2O3 dan 50 mg Na2CO3 Dimasukkan dalam beaker glass.

Dilarutkan dengan 250 ml aquades.

Pembuatan larutan Amilum 1 %

(Januari 2023) Hal.44 - 50

- a. Disiapkan alat dan bahan
- b. Ditimbang 1 g amilum
- c. Dilarutkan kedalam 100 ml aquades
- d. Dipanaskan selama 3 menit sambil diadukaduk

Pembuatan larutan H2 SO4 10% v/v

Disiapkan alat dan bahan

Ditimbang H2SO4 sebanyak 10 ml

Dimasukkan ke dalam beaker glass dan ditambahkan sebanyak 100 ml aquades

Pembakuan larutan Na2S2O3 (FI edisi III hal. 749)

Disiapkan alat dan bahan

Ditimbang 30 mg K2Cr2O7 yang sebelumnya telah dikeringkan pada suhu 1200 selama 4 jam, dilarutkan dengan aquades.

Ditambahkan dengan cepat 0,43 g KI, 0,30 g NaHCO3 dan 3 tetes HCL pekat.

Disumbat labu, kemudian digoyang hingga tercampur, simpan di tempat gelap selama 10 menit.

Dititrasi dengan larutan Na2S2O3

Standarisasi larutan 12 dengan larutan Na2 S2 O3 0,1 N

Disiapkan alat dan bahan

Dipipet Na2 S2 O3 0,1 N sebanyak 5 ml menggunakan pipet volum.

Ditambahkan 5 tetes amilum 1%.

Ditrasi dengan larutan I2 sampai warna biru

Perlakuan diulangi sebanyak 3 kali.

Penetapan kadar vitamin C cabai rawit

Disiapkan alat dan bahan

Ditimbang 10 g sampel cabai, lalu dihaluskan dengan blender.

Disaring dengan menggunakan kertas saring untuk memisahkan filtratnya.

Dimasukkan ke dalam erlenmeyer 125 ml.

Ditambahkan 3 tetes larutan H2 SO4 10 %.

Ditambahkan 5 tetes larutan amilum 1 %.

Dititrasi dengan larutan I2 standar sampai warna biru.

Dicatat volume titrasinya.

Perlakuan diulangi sebanyak tiga kali

Cara Analisis

Rumus

% kadar vitamin C = $(V \times N \times K)/(W \times 0,1) \times 100 \%$

Keterangan:

V = Volume Titrasi (ml)

N = Normalitas Iodium (N)

K = Kesetaraan Vitamin C (mg vitamin C)

W = Berat Vitamin C (mg)

1 ml I2 0, 1 N setara dengan 8,806 mg C6H8O6 (Dirjen POM, 1995)

HASIL PENELITIAN

Merupakan uraian obyektif tentang hasil – hasil penelitian dan pembahasan

Dikemukakan dengan jelas dalam bentuk narasi dan data yang dimasukkan berkaitan dengan tujuan penelitian, bila perlu disertai dengan ilustrasi (lukisan, gambar, grafik, diagram), tabel atau foto yang mendukung data,

Sederhana dan tidak terlalu besar. Hasil yang telah dijelaskan dengan tabel atau ilustrasi tidak perlu dijelaskan panjang lebar dalam teks.

Tabel 1. Uji Kualitatif tanaman cabai rawit (Capsicum fructuscens L.)

No	Pereaksi	Perubahan	Ket.
		Warna	
1.	Benedict	Merah	(+)
2.	Fehling A	Kuning tua	(+)
3.	FeSO ₄	Coklat	(-)
		kemerahan	

Sumber: Data Primer 2019

Keterangan:

(+) = mengandung vitamin C

(-) = tidak mengandung vitamin C

Tabel 2. Penetapan kadar vitamin C dalam cabai rawit

Titrasi	Volume I ₂ (ml)	
I	1,8	
II	2,4	
III	2	

PEMBAHASAN

Vitamin C (asam askorbat) adalah salah satu vitamin (nutrisi) yang sangat diperlukan oleh tubuh serta mempunysi fungsi untuk meningkatkan daya tahan tubuh (sistem imunitas tubuh). Vitamin C merupakan jenis vitamin yang mudah larut dalam tubuh,

sehingga tubuh akan lebih mudah menyerap vitamin C dan menyalurkannya kepada seluruh anggota tubuh yang memerlukan. Vitamin C dapat ditemukan di alam hampir pada semua tumbuhan terutama sayuran dan buah-buahan. Salah satu buah yang mengandung vitamin C adalah cabai rawit. Salah satu jenis cabai rawit yang digunakan pada penelitian ini adalah cabai rawit kanuku langkan yang diperoleh dari daerah Batusura'. kecamatan Rembon. kabupaten Tana Toraja. Analisis penetapan kadar vitamin C dalam sampel dilakukan dengan metode titrasi iodimetri (titrasi secara langsung). Hal ini di dasarkan dari sifat vitamin C yang dapat bereaksi dengan iodium.

Sebelum ditetapkan kadarnya, terlebih dahulu dilakukan uji kualitatif untuk mengetahui ada tidaknya vitamin C yang terkandung dalam cabai rawit jenis kanuku langkan. Berdasarkan uji kualitatif yang dilakukan pada pereaksi benedict dan fehling A, menunjukan adanya kandungan vitamin C hal ini diketahui dengan adanya perubahan warna. Reaksi yang terjadi pada benedict yaitu:

$$C_6H_8O_6+2CuSO_4.5H_2O \rightarrow 2H_2SO_4+C_6H_6O_6+ \\ Cu_2O+4H_2O$$

Namun pada pereaksi FeSO₄ tidak menunjukkan adanya kandungan vitamin C, hal ini dapat dilihat pada sampel yang berubah warna menjadi coklat kemerahan yang seharusnya berubah warna menjadi ungu. Hal ini mungkin disebabkan karena pereaksi yang sudah teroksidasi. Hasil kualitatif dapat dilihat pada tabel I.

Pembakuan iodium dilakukan sebanyak 3 kali. Tujuan dilakukan pembakuan adalah untuk menyamakan larutan yang digunakan untuk titrasi dengan standar larutan baku. Hasil dari normalitas titrasi didapat N_1 = 0,071 N, N_2 = 0,061, N_3 = 0,068 N dan hasil dari rata-rata normalitasnya 0,067 N.

Dasar dari metode iodimetri adalah bersifat mereduksi vitamin C. Vitamin C (asam askorbat) merupakan zat pereduksi yang kuat dan secara sederhana dapat dapat dititrasi dengan larutan baku iodium. Metode iodimetri(ttitrasi langsung dengan larutan iodium 0,1 N) dapat digunakan pada asam askorbat murni atau larutannya. Metode iodimetri yang digunakan dalam penetapan kadar vitamin C dalam cabai rawit ini merupakan suatu metode yang memiliki ketepatan yang baik karena dihasilkan jumlah titran yang hampir sama banyak pada setiap seri pengukurannya (Rohman, 2007). Reaksi yang terjadi yaitu:

$$C_6H_8 O_6 + I_2 \longrightarrow C_6H_6O_6 + 2HI$$

Penetapan kadar vitamin C pada cabai rawit dilakukan juga sebanyak 3 kali replikasi, dengan maksud untuk membandingkan hasil dari setiap titrasi. Penetapan kadar vitamin C dengan metode iodimetri ini merupakan reaksi reduksi-oksidasi (redoks). Dalam hal ini vitamin C bertindak sebagai zat pereduksi (reduktor) dan I₂ sebagai zat pengoksidasi (reduktor). Dalam reaksi ini terjadi transfer elektron dari pasangan pereduksi ke pasangan pengoksidasi.

Asam askorbat dioksidasi menjadi asam dehidroaskorbat, sedangkan iodium direduksi menjadi iodida, reaksinya seperti berikut:

Asam Askorbat Asam Dehidroaskorbat

Gambar 1. Reaksi antara vitamin C dan Iodin (Rohman, 2007)

I₂ (kelebihan) + Indakator Kanji menjadi biru terbentuk kpmpleks warna biru dari kanji dan I₂ yang berlebihan.

Hasil percobaan penetapan kadar vitamin C pada cabai rawit jenis kanuku langkan adalah 11 mg/10 g. Dari hasil ini terjadi perbedaan dengan hasil penelitian kadar vitamin C cabai rawit merah yaitu 143,7 mg/100 gram, sehingga kadar vitamin C cabai rawit jenis kanuku langkan lebih kecil dari kadar

cabai rawit merah.

Hasil kadar yang diperoleh dari penelitian ini 11 mg/ 10 g tidak sebanding dengan kebutuhan asupan vitamin C per harinya yang telah ditetapkan oleh *Recommended Daily Allowance* (RDA) untuk remaja usia 11-14 tahun adalah 50mg/hari dan usia 15-18 tahun 60mg/hari (Silalahi, 2006).

SIMPULAN DAN SARAN

Simpulan

Berdasarkan hasil penelitian diketahui bahwa cabai rawit (*Capsicum fructuscens* L.) mengandung vitamin C dengan kadar sebesar 11 mg/ 10 gram sampel.

Saran

Perlu dilakukan uji vitamin C (asam askorbat) pada cabai dengan jenis dan varietas yang berbeda untuk dibandingkan kandungan vitamin C terbesarnya dengan metode yag lain.

DAFTAR RUJUKAN

- Dalimartha, 2000. *Atlas Tumbuhan Obat Indonesia*. Jilid II. (Jakarta: Trubus Agriwidya)
- Dorland, 2006. *Kamus Kedokteran Dorland*. Jakarta: EGC
- Douglass, 2001. *Meda-dose Vitamin C in Treatment of the Common Cold: a Randomised Controlled Trial.*Australian Nasional University,
 Canberra, ACT. 36: pg. 26-27.
- Departemen Kesehatan RI. 1979.

 Farmakope Indonesia. Edisi III.

 Jakarta: Depkes RI
- Goodman and Gilman, 2006. *The Pharmacological Basis of Therapeutics*. New York: The McGraw-Hill Company.
- Guyton , 2008. *Buku Ajar Fisiologis Kedokteran Edisi II.* Jakarta: Penerbit
 Buku Kedokteran EGC.
- Hahn, 1996. *Anti Aging Cosmetics*. Stanford: Stanford University. pg. 12-15

- Padayatti, 2003. *Review Vitamin C as an Antioxidant: Evaluation of Its Role in Disease Prevention*. Journal of the American Collage of Nutrition, 22:18-35. Pak. J. Bot, 40: pg.1359-1386.
- Padmaningrum, R.T.2008. *Titrasi Iodimetri*. Jurnal Pendidikan .
- Prajnanta, F. 2007. *Agribisnis Cabai Hibrida*. Jakarta. Penebar Swadaya.
- Rohman, Abdul. 2007. *Kimia*FarmasiAnalisis. Pustaka Pelajar.

 Yogyakarta.
- Setiadi, 2008. Cabai Rawit Jenis dan Budaya. Jakarta. Penebar Swadaya. Suharto. 1991. Teknologi Pengawetan Makanan. Jakarta. Bumi Aksara.
- Sharma, 2007. *Effect of Collagen Biosynthesis*. India: Birla Institute of Technology. 2049-2054.
- Sherwood, 2000. Fisiologis Manusia dari Sel ke Sistem. Jakarta: Penerbit Buku Kedokteran EGC.
- Silalahi, J., 2006, *Makanan Fungsional*, Kanisius.
- Svehla, G. 1990. Vogel: Buku Teks Analisis Anorganik Kualitatif Makro dan Semimikro, Bagian I. PT Kalman Media Pusaka: Jakarta.
- Sudarmaji, 2007. *Analisa Bahan Makanan dan Pertanian*. Liberty.

 Yogyakarta.
- Tjandra, E., 2011. *Panen Cabai Rawit Di Polybag*, Cahaya Atma Pustaka,
 Yogyakarta
- Underwood, 1999. *Analisis Kimia Kualitatif.* Erlangga. Jakarta.
- Yasinta, Y. S.2014. Penentuan Kadar Asam Askorbat dari Vitamin C dengan Metode Iodimetri. Jakarta: Universitas Islam Negri Syarif Hidayatullah.

Adhitama Asmal¹, Riska Yuli Nurvianthi², Tonsisius Jehaman³ /JKLR: JurnalKesehatanLuwu Raya Vol.9 No.2 (Januari 2023) Hal.44 - 50

Wardani, L. A, 2012. Validasi Metode
Analisis dan Penetuan Kadar
Vitamin C dengan
Iodimetri. FMIPA. Depok
Wijanarko, 2002. Analisis Hasil Pertanian.
Malang: Universitas Brawijaya.
Wulandari, Putri, 2012. Penetapan Kadar
Vitamin C pada Belimbing Wuluh
(Averrhoa bilimbi L.) Secara
Iodimetri. Karya Tulis Ilmiah.
Sekolah Tinggi Ilmu Kesehatan
Muhammadiyah Klaten.